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Abstract. We present a lattice-gas model with attractive interactions arising from valence
electron delocalization from single-site orbitals. Such effects cannot be described by a pair-
interaction potential and produce a strongly asymmetric phase diagram for a nonmetallic
molecular vapour coexisting with a liquid metal. Although the model is extremely simplified,
it reproduces features of the alkali fluids which contrast with those of simple fluids. A unified
treatment of the ionic and electronic structures allows obtaining the electrical conductivity at
chosen thermodynamic conditions. We have found that the metal–nonmetal transition in this
model is driven by the break in the percolation of the ionic structure, which takes place in the
vapour phase close to the critical temperature, rather than by electronic localization induced by
other effects of disorder.

Simple liquids are described as systems of classical particles with isotropic, pair-additive
interactions. The alkali fluids show strong deviations from these requirements, with fully
delocalized valence electrons in the dense liquid metal and electrons which are localized
around each ion (making neutral atoms) or small clusters in the rarefied vapour. A large
body of experimental data has been obtained for the alkali fluids at high temperatures [1],
and the vapour–liquid phase diagrams of these systems, with temperatures and densities
scaled to their critical values, clearly show a law of corresponding states, but one which is
different from that for simple atomic and molecular fluids.

Theoretical studies of the dense liquid metal phase [2] use electron–ion pseudopotentials
and standard perturbation theories which begin with a jellium model for the valence electrons
and a reference simple fluid for the ions. These approaches provide fairly good descriptions
of the thermodynamics and structure of the dense liquid metals. However, they start failing
near the critical region of the fluids, as the system approaches the transition to a nonmetallic
molecular vapour, with a qualitatively different structure for the valence electrons [3]. We
have recently presented a study of the alkali fluids which combines the perturbation approach
for the dense liquid metal with a molecular description of the low-density vapour, through
a variational principle [4]. The internal energy for each ion is taken as the lower of the
atomic ground state and that of a plasma, described by the perturbation theory, with an
effective density (̂ρ) which describes the local environment of the ion. When this effective
density is taken to be the macroscopic one (ρ), the theory becomes a variational mean-
field approximation which gives a gross overestimate of the critical temperature (by about

0953-8984/96/479359+04$19.50c© 1996 IOP Publishing Ltd 9359



9360 P Tarazona et al

a factor of 3.5) and a very bad description of the vapour–liquid coexistence curve. In
computer simulations for both lattice-gas [4] and continuous [5] fluids, when we use an
ad hocdescription ofρ̂ in terms of the coordination of each ion, we obtain both a good
estimate of the critical temperature and a qualitatively correct shape for the vapour–liquid
coexistence curve.

However, the above description is far from being fully satisfactory. First, because of the
purely ad hoccharacter of the energy map in terms of the local environment and second,
because, although it provides fairly accurate thermodynamic properties, it does not give
a self-consistent description of the electronic structure. Such a description is required to
understand the nature of the transition from metal to nonmetal. In our previous work [4], we
claimed that this transition was essentially driven by percolation of the ionic structure; this
view was supported by our results for the electric conductivity along the critical isotherm,
calculated with a ‘classical’ description of a network of unit resistors between ions at the
nearest-neighbour distance. Now, we present a simplified model which allows for a self-
consistent treatment of the ionic and electronic structures. Our aim is not a quantitative
description of the alkali fluids, but rather, the simplest model sharing with them the basic
qualitative features of their thermodynamics and electronic structure.

As a first simplification, we use a lattice-gas description of the ions; this approach
was already taken in some of our previous work [4]. Thus, the ions partially occupy a
BCC lattice, so at high density (dense liquid) each ion has eight nearest neighbours. The
electronic structure is described by a tight-binding model, with one orbital localized at
each occupied lattice site. The electronic hopping matrix element is restricted to nearest-
neighbour ions and has a fixed valuet . For a given ionic configuration of the lattice gas
with N monovalent ions, the electronic states and energy are obtained from occupying theN

lowest one-electron eigenstates (including the twofold spin degeneracy) of the tight-binding
Hamiltonian. Isolated ions contribute with the ‘atomic energy’,εa, which will be taken as
our zero of energy. In the dense fluid, the electronic states are extended over the entire
system and their energies form a continuous band from−8t to 8t . In its ground state, the
lower half of the energy band is occupied. The typical description of a metal results, with
a cohesive energy of about 2t per ion. In the critical region, we expect large clusters with
complex connectivity, the electronic states would reflect the topological disorder of the tight-
binding Hamiltonian, and the internal energy of the system would result from occupation of
theN lowest eigenstates. The model could be related to the electronic structure in disordered
systems, but in our case: the topological disorder of the ions is obtained self-consistently,
with the electronic band energy, through Monte Carlo simulation in a finite lattice. The
hopping elementt is the only parameter and it sets the scale of energy and temperature. In
this tight-binding model the nonadditive character of the interactions is clear, e.g. the ratio
of the cohesive energy per ion of an isolated dimer to that of a dense liquid is approximately
2; in the equivalent model for simple fluids (a lattice gas with additive, nearest-neighbour,
pair interactions), the above ratio would be the coordination number (8). The experimental
values for that ratio in the alkali fluids are about 3, so our model gives a qualitatively
correct, but somewhat exaggerated, description of this crucial aspect.

The model has been studied in two steps. We generate random configurations of lattice
occupation, over the whole range of mean densityρ. For each configuration, the tight-
binding problem is solved exactly and the band energy is obtained. As a first step, we
can fit these values to a single functionu(ρ), giving the mean energy per ion, and this
function can be used to get the mean-field-approximation phase diagram for the model.
Alternatively, the same electronic configurations may be used to fit a map of the energy
to the local environment of each ion, so that the total energy is given byU = ∑

ukNk,
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Figure 1. Liquid–vapour coexistence curves in reduced critical units,T/Tc and ρ/ρc. Open
circles are the results of the Monte Carlo simulations for the present model. The full squares
are experimental data for caesium. The broken line presents the symmetric phase diagram of
the BCC lattice gas with additive, nearest-neighbour, pair interactions, from a Monte Carlo
simulation.

where theNk are the number of ions in each configuration which havek (1 to 8) occupied
nearest-neighbour sites. The coefficientsuk are free parameters used to fit the whole set
of U for the variousNk in the configurations generated previously. This energy has the
same form as thead hocmap we had used previously [4] and also that in the ‘glue models’
[6] used to describe the properties of metals in another context, but now it is a parametric
function used to fit the results of an ensemble of microscopic electronic calculations. The
good accuracy of the fit (always within 2%) gives support to this map of the energy in terms
of the local environment of each ion and allows us to use it in a larger series of Monte
Carlo simulations to generate the thermodynamics and phase coexistence of the model. The
critical point, at a fractional lattice occupation ofρc = 0.29, haskBTc = 0.38t , which is
quite different from the mean-field results ofρc = 0.13 andkBT

mf a
c = 0.64t . This large

discrepancy was already noted in our previous work and seems to indicate that the clustering
effects are much more important in alkali fluids than in simple fluids. The results for the
vapour–liquid coexistence are presented in figure 1, in reduced critical units. The shape of
the curve obtained is compared to that for the lattice-gas model with pair interactions and,
also, with the experimental results for caesium. It is clear that our simple model provides a
good qualitative description of the asymmetry in the experimental coexistence curve. The
asymmetry results from the nonadditive character of the interactions.

The metal–nonmetal transition can be studied within the model, using the electronic
structures of equilibrium statistical configurations at any chosen thermodynamic conditions.
The model will recover the limits of the metallic dense liquid and the nonmetallic molecular
vapour. We can follow the transition with a Kubo–Greenwood approximation for the
electrical conductivity. We have obtained results showing that in the statistical average, the
transition from metal to nonmetal in the model is mainly driven by the lack of percolation in
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the ionic structures. The results with the Kubo–Greenwood approximation are very similar
to those obtained with a network of classical resistors [4].

We are working on the extension of the model to include thermal effects on the electronic
structure and the main effects of the electron–electron interaction. This would allow us to
check the possibility of a Mott-type metal–nonmetal transition and also to calculate the
paramagnetic susceptibility for comparison with experimental data.

Acknowledgments

This work has been supported by the Dirección General de Investigación Cient́ıfica y Técnica
of Spain, under Grant PB94-005-C02, and NATO Office of Scientific Research, under grant
SA 5-2-05 (CRG 940240).

References

[1] Hensel F 1984Physics and Chemistry of Electrons and Ions in Condensed Mattered J V Acrivos, N F Mott
and A D Yoffe (Dordrecht: Reidel) p 401

Hensel F, J̈ungst S, Noll F and Winter R 1985Localization and Insulator–Metal Transitionsed D Adler and
H Fritzche (New York: Plenum) p 109

Hensel F and Uchtmann H 1989Annu. Rev. Phys. Chem.40 61
Hohl G 1992PhD ThesisMarburg University
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